Algorithmic Techniques for Influence
Dynamics in Social Networks

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science

Giorgos Stamatelatos

Algorithms and Privacy Research Unit
Department of Electrical and Computer Engineering

Democritus University of Thrace

Advisor: Pavlos S. Efraimidis

Xanthi, July 2014

http://www.james.gr/
https://euclid.ee.duth.gr/
http://www.ee.duth.gr/
http://www.duth.gr/
http://utopia.duth.gr/~pefraimi/

Copyright © 2014 Giorgos Stamatelatos

http://www.james.gr/

Dedicated with extreme affection

and gratitude to my parents

Acknowledgements

The work included in this thesis could not have been performed if not for the assistance, pa-

tience, and support of many individuals.

First and foremost I offer my sincerest gratitude to my advisor, Pavlos Efraimidis, who has
supported me throughout my thesis with his patience, knowledge and expertise while allow-
ing me the room to work in my own way. I attribute the level of my Master’s degree to his
encouragement and effort and without him this thesis, too, would not have been completed or

written. One simply could not wish for a better or friendlier advisor.

Besides my advisor, I would like to thank the rest of my examining committee: Prof. Vassilis
Tsaoussidis, Prof. Alexandros Karakos, Prof. Paul Spirakis and Assistant Prof. Spyros Konto-

giannis for their insightful comments on this work.

I would also like to extend my appreciation to my colleague George Drosatos for his help and
support during my studies. Finally, special thanks go to my friend Panos, aka “Takis”, for his

remarkable ability to solve seemingly complicated problems.

Giorgos Stamatelatos

Xanthi, July 2014

Abstract

Algorithmic techniques for influence dynamics in social networks

In this thesis, a non-cooperative, zero-sum game of influence between two firms on a social
network is defined and examined. The social network is represented with a directed graph of
n individual agents with an initial opinion on a particular subject. The DeGroot model defines
the opinion dynamics and the rules of social interaction, according to which the belief of each
individual is influenced by the opinions of their neighbors. The players of the game are two
external entities who have diametrically opposed opinions. Each player tries to manipulate the
community in their own opinion’s favor, by actively interfering with the social graph struc-
ture. We investigate possible equilibria, identify basic principles for a successful strategy and

compare the performance of several algorithms implementing player strategies.

Keywords - Social Networks, Opinion Dynamics, Influence Game

vii

[epilnym

AAlyop1Opikég TeEXVIKEG YL TN SUVOPLKT ETLPPONG GE KOLVOVIKY diKkTUO

H dvvopikr] empponig yvopov eivat éva cOVOA0 artd HOVTEAX TTOL ATOPPEOLY ot T HEAETT)
g mpoérevong kot eEEALENG TV YAwoodv. H duvapikr empporg 6T kotvwvik diktua ko
LY VIODEWPNTIKT AVTIHETOTLOT) TETOLWV OEPATOV TPOCPATA TPOGEAKVGE TO EVOLOPEPOV TNG
epevvnTiknG KowotnTac. Tétowa povtéha omoteAoOvTaL KaTd Kovove autd évav vmAo apldpod
atopwv, ot kabe éva atd Touvg omoiovg amodideTal pio Katdotaon oL ovopdleTon yvaun,
TNV OTOlAL EVIIUEPOVOLY HEG® EAANAETIOPACEWY HE TOVG YEITOVEG TOVG. e TETOLX HOVTEAQ
ETLPPOTIG, T] CUUTEPLPOPA TWV ATOPWV OXKOAOVOK évay atAd kavova ko 1) enidpact) Tng To-
moloyiag tov diktoov Aapfdvetor v OYmy péow TV cAAnAemdpdoewv AOYw yerTviaong.
Qg ex TOOTOL, TA HOVTEAQ KOLVWVIKNG ETLPPONG TTOPEXOLY EPYAAELX IO TNV TTPOCOHOLWOT)
NG GLAAOYIKTG CUUTEPLPOPAG Ge TOADTAOKA CUCTHHATA TNG KOLVWVIOAOYIOG, PUOIKNG KOt

EMLOTIHNG TWV VTTOAOYLGTOV.

TNV HETATTUXLOKT] aUTH epyacio opileTon €va avTay®wVIoTIKO TOLYVIO ETLPPONG TAVL GE
Kowwvikd diktua eved tawtoypova efetdlovror mbavd onpeio loopporiag tov kabng Kot

aod0TIKEG OTPATIYLKES YO TOVG SO TTOUKTEG.

To xowvwvikd SiKTLO TAV®W GTO OTOLO €YEL OPLOTEL TO TALYVIO HOVTEAOTIOLELTOL LE HOPYPT] YPOL-
QNHATOG, TOVL OTTOLOL Ol KOPLPEG AVTLITPOCWIEVOLY TTPOCWITA KOL Ol AKUEG OXECELS ETTLPPONG
peToEd TV Tpoodnwyv. To kowwvikd SikTuo vITakovEL GTOVG Kavoveg ToL povtélov DeGroot,
oUWV pe TO 07T0i0 ot KOPPOL TOU KOLV@VIKOD SIKTOOL TTpocappdlovy Tn yvoprn Toug (o
AOyoug ammAoTnTOG £vag Sekadikog aptBpog petold 0 ka 1) avaAoyo He TIG YVOHES TV KOPPwV
€ TOVLG OTTOLOVG YELTVIALOLY e ETaVaANTITIKO TPOTTO, PortvOpevo ov odnyel (VTtd opLopéveg
npotmobéoelc) o looppomion TV YVvwpodv. T Toug oxomong Tng epyaciog xpnoiorotodvtal
anla ypagrpata, 0nwg path, cycle, wheel, aAA& ko ypagnpata scale-free. Ta teAevtaio

TANGLALOLY TEPLOGOTEPO HOPPOAOYLKA GE EVOL TTPAYHATIKO KOLVOVLIKO SiKTULO.

3to mapamtdve diktvo mpooTtiBevtal dvo emimAéov kopueég (Py ko Py mov amoteAovv Touvg
dvo maikteg Tov Tmoyviov) pe yvopeg 0 ko 1 avtiotorya. O emumAéov kopupég €xovy To
XapakTnpLoTikd 0t dev emnpedlovtal ammd dAlov kopPo touv Siktdov (dpa cOPPWVR pE TO
povtédo DeGroot 1) yvaoun toug mapapével otabepr}) oA emnpedovv dAlovg koppouvg. Metd
TNV EKTEAEDT) TOV ETAVOANTTTIKOD LITOAOYLGpHOU DeGroot, 0 pécog 6pog OAWY TV YVWHOV TOU
ypoprpatog Bo kpivel molog ek twv Py ko Py vrepioyvoe, avaloyo He To av auTtodg eival
HEYaAUTEPOG 1) PKpOTEPOG ad To 1/2. Ztnv epyacio avalbovtal cevipia ot onoia k&be
TOUKTNG EXEL TLEPLOPLOPEVOULG TTOPOLC, LITAPYEL SNADY) PEYLGTO OPLO OTLG KOPLPES TTOL MITOPEL

Vo NN pedOEL.

ix

Amo to mopamtdve yiveton capég 6tL 6TdX0G KABe ok eivat va emidé€el TIC kataAAnAdTe-
peg kopuég (oto e€ng “kivnon”) wote va kepdicel Tov avtirodo maiktn. e Tnv ebpeon g
BéATIoTNG KIVNONG GE UTAG YPAPTIHOLTOL KOL YLOL TNV KATOVONOT) TOU TTALYVIOU X PTG LULOTTOLELTOL
pio emavaAnmtikn brute-force teyvikr mov oe k&Be tng Pripa tpoomabel vo fpet pio kadOTepn)
kivnomn amtd v Tponyovpevn kaddTepr). Me tn pébodo avtn yivetal capég OTL 1 oTPATNYLK
evog TaikTn mpémel va tkavortotel Vo cLVONKES DOTE VO LILEPLEYVGEL TOL AVTUTAAOL TOL: 1)
Kivnon Tov va amoteleitor amd kKopuvPég pe LPNAS eigenvector centrality evd Tavtdypova
Bo mpémel avTég vau elvan dieoToppéveg o€ OAO TO SIKTLO KaL OXL CUYKEVTIPWOHEVES GE KOVTLVA
onpeio. H mapatrpnon avtr odnyei ce xpnon heuristic adyopiBpwv, 6nwg tov k-center yia
pio kahr) Abot o€ TOADTAOKA Ypo@ripata, 61ov eivor advvarr i xprion brute force texvikodv

Aoy ToAvTAoKOTNTOG.

Sta mhaiowx g epyaoiag éxel ovoarttuyBei pia cuAloyn epyodeiwv o€ java, Thvw 6TV omoia

éxeL yiver TAN00g SoKIHOV KoL TELPOPATOV.

AéEerg-Kherdrd - Kowwvikd Aiktoa, Avvopuxr) Empporg, Iaiyvio Emipporig

Contents

Abstract

IepiAnyn

Contents
Symbols
1 Introduction

2 Background

2.1 TheSocial Graph.

2.1.1 The Adjacency Matrix

2.1.2 Definitions
213 Centrality
2.2 TheDeGrootModel
2.21 Updating Process
222 Convergence

223 Google’sPageRank

3 The Game-Theoretic Model

3.1 Definition e

3.1.1 Empirical Definition

3.1.2 Formal Definition

32 Examples L o

vii

ix

xi

xiii

33

The Challenge

3.4 Strategy Principles

4 Algorithms

4.1

4.2

4.3

Random Brute-Force Search Algorithm

Greedy Algorithm

4.2.1 Algorithm Process

42.2 Example

4.2.3 Strategy Principles

Generalized Greedy Algorithm

5 Experimental Results

5.1

5.2

53

54

5.5

Path Graph
Cycle Graph
Two-Wheels Graph . . .
Scale-Free Graph

Scale-Free Cluster Graph

6 Discussion

6.1

6.2

6.3

Strategy Principles
Algorithm Conclusions .

Future Work

A Figure and Diagram Sources

Bibliography

xii

17

17

19

19

20

22

23

25

26

28

30

31

33

37

37

37

38

41

45

Symbols

d damping factor

davg average degree

d; degree of node N;

D density

D;; distance map

E number of edges

m number of move nodes
n number of nodes

N; the node with ID i

Di opinion of Nj

Py, P1 the two players

ri PageRank of N;

s eigenvector centrality

score the final state of the game in [0, 1]
S suggested move
T;; adjacency matrix

W; weight of index i

xiii

Chapter 1

Introduction

The opinion dynamics is a class of agent based models arising from the study of the origins
and evolutions of languages. Influence dynamics in social networks and game-theoretic treat-
ment of such problems has recently attracted the interest of the research community (see for
example the books [11, 12] or the papers [6, 8, 10, 19]). These models are typically consisted
of a large number of individuals, each of which is assigned with a state called opinion and up-
dates its opinion through interactions with its neighbors. In these opinion dynamics models,
the individual behavior follows a very simple rule and the effect of the network topology is
introduced by the neighbor interactions, so these models provide powerful tools to simulate
and investigate the collective behavior in complex systems in sociology, physics and computer

science.

In this thesis we focus on the DeGroot model, according to which the belief of each individ-
ual is constantly influenced by the opinions of their neighbors until the network reaches an
agreement (consensus). An interesting aspect that derives from this model is the concept of
stubborn agents and the influence they can exert over a social community. Stubborn agents
with opposing views prevent consensus. This behavior raises further questions: How can a
stubborn agent affect the overall opinion of the society in his favor? How can a stubborn
agent prevail over another one with opposing belief? What is the best way to impose one’s
view over a human society? These types of phenomena are seen in major social fields, like

politics and economics.

In this work, we will try to answer these questions by defining an influence game between
two firms on a social network. The social network is represented with a graph; each vertex
represents an individual and each edge represents a form of trust or influence. We will exam-
ine why stubborn agents prevent consensus using the rules dictated by the DeGroot model.
Furthermore, we will establish some basic principles that define a successful strategy for a

stubborn agent to optimally impose his opinion over the society. Finally, we will refer to two

2 Chapter 1 Introduction

algorithms that we developed, one based on a brute-force and one on a greedy method, and

perform simulations for those agents on various types of graphs.

The rest of this thesis is structured as follows:

Chapter 2: Background

In this chapter, we provide the necessary background for understanding key concepts in this

thesis. Readers familiar with graph theory and the DeGroot model may skip this chapter.

Chapter 3: The Game-Theoretic Model

The game is being defined and its mechanics are examined. We provide examples for better
understanding as well as graph drawings. In this chapter we will also refer to a few important

principles that make up a decent strategic behavior.

Chapter 4: Algorithms

Taking into consideration the principles of Chapter 3, we analyze two algorithms that we de-
veloped for computing action suggestions: one based on a brute-force method (random brute-

force search) and one based on a heuristic (greedy algorithm).

Chapter 5: Results

In this chapter, the results of our tests are presented in the form of tables. The experiments
are separated based on the graph type. Since in many problem instances we are not aware
of the optimal strategy, we evaluate our algorithms by comparing them with each other and

specifically within a round-robin tournament context.

Chapter 6: Discussion

Finally, we will summarize our work, recap our conclusions and refer to open problems and

aspects that require further examination.

Chapter 2

Background

In this chapter, we will refer to some preliminary concepts on social graphs and graph theory
as well as the DeGroot model, which defines the opinion dynamics and the rules of social

interaction in a community.

Two of the most successful and recent studies for social networks and game theory are Jack-

son [11] and Easley and Kleinberg [12].

2.1 The Social Graph

Let N = {1,2,...,n} be the set of nodes that are involved in a network of relationships. Nodes
will also be referred to as vertices, individuals or agents, depending on the setting. It is impor-
tant to emphasize that nodes might be individual people, countries, or other organizations; or

a node might even be something like a web page belonging to some person or organization.

The network form -as being discussed in this thesis- is a weighted directed graph, where one
node i is connected to another node j or not. Furthermore a label (weight) is associated with ev-
ery edge in the graph. Finally, there can’t be more than one edge from a node i to another node
j. It is worth mentioning that there are social communities or even Internet social networks
that a joint consent is needed to establish a relationship, for example Facebook which can be
represented with an undirected graph (whereas the “follower” mechanic of Twitter creates a
directed graph). However, from a mathematical perspective, the concept of a directed graph is

broader, hence this is what we are going to be based on.

2.1.1 The Adjacency Matrix

An adjacency matrix is a means of representing which vertices of a graph are adjacent to which

other vertices. Specifically, the adjacency matrix of a graph G on n vertices is the n X n matrix

3

4 Chapter 2 Background

where the non-diagonal entry a;; is the weight of the edge from vertex i to vertex j, and the
diagonal entry a;; is the weight of the edge (loop) from vertex i to itself. The normalized

adjacency matrix, which will be referred later, is the adjacency matrix whose rows sum to 1.

FIGURE 2.1: An example graph with 3 nodes.

As an example, the adjacency matrix of the graph in Figure 2.1 (assuming all edge weights are

equal) is
0 11
T=1|1 0 0 (2.1)
010
while the normalized adjacency matrix is
0 12 1f
T,=11 0 0 (2.2)
0 1 0

2.1.2 Definitions

Strongly connected — A directed graph is strongly connected if every vertex is reachable from
every other following the directions of the arcs (edges). For example, the graph in Figure 2.1

is strongly connected.

Diameter — The distance between two nodes is the length of the shortest path or geodesic
between them. If there is no path between the nodes, then the distance between them is infinite.
The diameter of a network is the largest distance between any two nodes in the network [1].

Any strongly connected directed graph has finite diameter.

Chapter 2 Background 5

Degree — The degree d; of a node i is the number of links that involve that node. For a directed
graph, two measures exist: in-degree and out-degree. In the context of this thesis, we will refer

to in-degree simply as degree. For undirected graphs, the average degree is dgog = 2E/n.

Density — The density D of a network keeps track of the relative fraction of links that are
present, and for an undirected graph is defined as £/E,,.., where E is the number of edges on
the network and E, 4, the maximum number of edges. E,,,x is, by definition, equal to n(n - 1) /2,

soD = 2E/n(n -1) = davg/(n— 1).

2.1.3 Centrality

Centrality refers to indicators which identify the most important vertices within a graph. Appli-
cations include identifying the most influential person(s) in a social network, key infrastructure
nodes in the Internet or urban networks, and super spreaders of disease. Centrality concepts
were first developed in social network analysis, and many of the terms used to measure cen-

trality reflect their sociological origin. [14]

Degree centrality — Perhaps the simplest measure of the importance of a given node in a net-
work is its degree. A node with degree n—1 would be directly connected to all other nodes, and
hence quite central to the network. A node connected to only 2 other nodes (assuming large
n) would be, at least in one sense, less central. The degree centrality of a node i is normalized
in [0, 1] by dividing its degree d; with n — 1 and tells us how well it is connected, in terms of

direct connections. [11]

Closeness centrality — In connected graphs there is a natural distance metric between all
pairs of nodes, defined by the length of their shortest paths. The farness of a node s is defined
as the sum of its distances to all other nodes, and its closeness is defined as the inverse of the

farness. [16]

Betweenness centrality — Betweenness centrality of a node s is equal to the number of short-
est paths from all vertices to all others that pass through s. It was first proposed by Freeman,

who has also developed a number of other centrality measures. [7]

In the next section (Section 2.2), we will refer to additional centrality measures that are related

to the unit-eigenvector of the adjacency matrix T.

2.2 The DeGroot Model

The seminal network interaction model of information transmission, opinion formation, and

consensus formation is due to DeGroot. [5]

6 Chapter 2 Background

2.2.1 Updating Process

Individuals in a society start with initial opinions on a subject. Let these be represented by a

n-dimensional vector of probabilities

T

P(0) = |p1(0) p2(0) ... pal0)

Each p;(0) lies in the interval [0, 1] and might be thought of as the probability that a given
statement is true, or the quality of a given product, or the likelihood that the individual might
engage in a given activity etc. The interaction patterns are captured through the normalized
adjacency matrix T mentioned in Section 2.1.1. The interpretation of Tj; is that it represents
the weight or trust that agent i places on the current belief of agent j in forming his or her

belief for the next period. Beliefs are updated over time so that

p(t) =Tp(t-1) =T p(0) (2.3)

For the example of Figure 2.1, the normalized adjacency matrix is

0 1o 1f
T=1{1 0 O (2.4)
0 1 0

According to the updating rule in Formula 2.3

0 12 12 1 0
p()=Tp(0)=|1 0 0|x|0|=|1
0 1 0 0 0

(2.6)

Then, as agents update again, beliefs become

0 12 1kl |0| |05
p(2)=Tp(L)=[1 0 0|x|1|=]0 (2.7)
0 1 0 0 1

Chapter 2 Background 7

Iterating this process leads to beliefs that converge:

2/5
tli_)r{)lop(t) = |2/5 (2.8)
2/5

2.2.2 Convergence

As illustrated in the previous example, the updating process converges if

lim p(t) = lim T'p(0) (2.9)

t—oo t—oo

exists for all initial vectors of beliefs p(0). In order for this to happen, T* must converge. In

the above example:

2/5 25 1fs
tll)ngoTt: 2/5 2/5]./5 (210)
2/5 2/5 1/5
Thus,
25 25 s |pa(0)
tILrEop(t):tlLrEoTtp(O): 2/5 2/5 1/5] X |pa(0) (2.11)
25 25 15| |ps(0)
- §p1<0>+§p2<0>+§p3(0>) 111 e

Hence, no matter what beliefs p(0) the agents start with, they all end up with the same limiting
beliefs. The example also illustrates that agents 1 and 2 have twice as much influence over the

limiting beliefs as agent 3 does.

Not all graphs converge, however. For instance, a graph with adjacency matrix

0 1o 1f2
T=|1 0 0 (2.13)
1 0 0
will oscillate
1 0 0 2 1k 0 1 0 0
=10 1o [, T*=|1 0 0|.T*=1{0 1o 1k (2.14)

0 1 1f2 1 0 0 0 1 15

8 Chapter 2 Background

and there is no convergence. According to Golub and Jackson [9, Theorem 2], a stochastic

matrix T is convergent if and only if it is strongly aperiodic.

This process can be generalized to any graph that has convergence (assuming n = 3 for sim-

plicity):
S1 S2 3
th_{EoTt =|s1 s2 s3|=s" [1 1 1]T, where s = [sl $2 33] (2.15)
S1 S22 S3
We already know that
tli_)r&pi(t) = s X p(0), for any p(0) (2.16)

Since this is true for any p(0), it must also be true for p(1). Thus,
sxp(0) =sxp(1l) = s xp(0) =sx (T xp(0)) (2.17)
And since this, again, has to hold for any p(0), it follows that
sT=s (2.18)
Thus, s is a left-hand eigenvector of T corresponding to the eigenvalue 1 and is defined as the

eigenvector centrality of the graph. [11, Section 8.3.5]

2.2.3 Google’s PageRank

Social influence, as defined in the context of the DeGroot model provides a foundation for
eigenvector based centrality measures. It also provides a basis for understanding other related
systems. In particular, the structure of Google’s PageRank system [15] is analogous to the
influence vectors here, where the T matrix is derived by normalizing the directed links between
web pages (so that T;; = 1/q4; if page i has a link to page j, and d; is the number of directed
(out) links that page i has to other pages). In a graph with normalized adjacency matrix T, the

calculation of PageRank is an iterative process based on the following rule:
r(t)=d+ (1-d) T r(t-1) (2.19)

where T7 is the transpose adjacency matrix, r(0) is a vector of ones and d a parameter called

damping factor. If d = 0 then the updating rule becomes

r(t) =T r(t - 1) (2.20)

Chapter 2 Background 9

Thus, when convergence is achieved

t T
lim r(t) = lim (TT) r(0) = (tlim Tf) r(0) (2.21)
because (AB)" = BTAT = (AQ)T = (AT)Q. But since r(0) is a vector of ones, according to
Equation 2.15 we have that

lim r(t) =s (2.22)

t—o00

The above equation depicts the fact that PageRank with d = 0 is in fact the eigenvector cen-

trality.

Chapter 3

The Game-Theoretic Model

3.1 Definition

3.1.1 Empirical Definition

The game proposed in this thesis comprises a social network of n individual agents with an
initial opinion on a particular subject. Two external individuals (the players) approach with
the task of manipulating the community in their own opinion’s favor. These two agents have
diametrically opposed opinions and will not listen to anyone in such a way that their opinion
on that matter remains unmodified. Each player chooses a set of preexisting agents and tries
to “talk them out”, affecting their opinion, which in turn affects the opinion of their neighbors
and so on. The players have limited resources in order to carry out their task: they may “ap-
proach” at most a certain number of other agents and they also have limited “time” in terms of

completing their whole objective.

3.1.2 Formal Definition

This non-cooperative! game consists of a graph, two players and their respective moves and

terminates upon DeGroot convergence.

The graph - This is the graph that represents the social network. The graph acts similarly to
a “map” in a strategy video game?; players may adapt their strategy depending on the map.
There are n vertices in the graph, all of which have initial opinions of 0.5 (though the initial

opinion vector doesn’t matter as we will later demonstrate).

Thttp://en.wikipedia.org/wiki/Non-cooperative_game
http://en.wikipedia.org/wiki/Real-time_strategy

11

http://en.wikipedia.org/wiki/Non-cooperative_game
http://en.wikipedia.org/wiki/Real-time_strategy

12 Chapter 3 The Game-Theoretic Model

The players — The two adversaries are represented by two additional vertices on the graph
(from now on “player vertices” or “stubborn agents”) with initial opinions 0 and 1 (let them be
Py and Py). Since these vertices’ opinions remain unchanged, they don’t have any outbound
edges. This type of node behavior can be expressed in our model with a self-link (or else a

loop) with (normalized) weight 1.

The player moves — A player move or a player action is a group of vertices that the respec-
tive player wishes to directly influence (the “move nodes” or “action vertices”). The move (eg.
for Py) is a vector [(N; = Wy), (Ny = Wa), ..., (N, = W,;)] modeled in the form of edges with
target Py and sources N, N, ..., N, with weights Wy, Wh, ..., W,,. Certain restrictions were
applied on a move, like the maximum amount of nodes to influence (m) and the maximum sum

of weights (W) + Wa + ... + W,,,).

Convergence — We consider convergence on the DeGroot model to be the final state of the
game. The average opinion value (score) determines the winner according to a simple formula:
The player Py wins if the average opinion of the network is less than 0.5, otherwise P; wins.
A draw as an outcome is very uncommon and usually only occurs when the actions from both

players are identical or if the graph’s geometry is symmetric.

The utility function of P; is Uy = score because P; is trying to shift the average opinion of
the network to 1 and the utility function of Py is Uy = 1 — score. Since the sum of the utility
functions is constant, this is a zero-sum game®. It is worth noting that swapping the opinions
of the two players will result in a complementary average opinion (1 —score) (this will become
more clear towards the end of Section 3.2.1), thus the value of the opinion itself (0 or 1) on the

stubborn agents does not matter.

3.2 Examples

3.2.1 First Example

We will now use the graph in Figure 2.1 to demonstrate the game. We will also define the

following parameters

3http://en.wikipedia.org/wiki/Zero-sum_game

http://en.wikipedia.org/wiki/Zero-sum_game

Chapter 3 The Game-Theoretic Model 13

meaning that each of the two players can affect only one node with weight 1*. During the
game, Py selects N3 and P; selects Nj. According to the definition we gave earlier, the graph

becomes the one illustrated in Figure 3.1.

2
@ €

FIGURE 3.1: An example graph of a game. Nodes are colored by the final beliefs.

P9

Vertices in this figure are already colored by their final opinion: black represents opinion 1 and
white represents opinion 0. Before we even dive in more detailed description, it is being clear
from the figure itself that nodes “close” to P; have darker color. The opposite stands true for
Py. The adjacency matrix of this graph (including the stubborn agents and assuming Py is the
fourth row and P; is the fifth row) is

0 1 1 0 1]
10 00O
T=10 1 01 0 (3.3)
00 010
0 0 0 0 1]
The normalized version of this matrix is
[0 15 15 0 1]
1 0 0 0 O
T,=10 2 0 12 0 (3.4)
0O 0 0 1 o0
0 0 0 0 1]
It can be easily shown that
[0 0 0 15 24
0 0 0 13 273
lim T, =10 0 0 23 13 (3.5)
000 1 O
0 00 0 1]

4Obviously, these are the maximum values. However, there is no reason for a player not to fully exploit them.

14 Chapter 3 The Game-Theoretic Model

So, assuming an initial opinion vector

p(0) = [p1(0) p2(0) po(0) 0 1| (5.6)

the limiting beliefs of the network are given by

lim p(t) = (tli_)n(}o T,f)p(()) = [2/3 2/3 1/3 0 1]T (3.7)

—o00

The average opinion on this final state is % so P; is the winner. We have shown that p(0) does
not play any role in the outcome of the game (as long as the initial beliefs of the stubborn agents
are 0 and 1). The element ij of the matrix in Equation 3.5 represents how much influence does

Jj exert over i.

One can notice that the final average opinion vector is the last column of the matrix of Equa-
tion 3.5. As such, if the opinions of the two players are swapped (or the players themselves),
the final average opinion vector will be the second last column of that matrix, which is com-

plementary to the last since the matrix is row stochastic.

3.2.2 Second Example

FIGURE 3.2: A scale-free graph with 25 nodes. Vertices are colored by their PageRank value.

Chapter 3 The Game-Theoretic Model 15

Let’s take a look at a more complicated example illustrated in Figure 3.2. This time, we define

m=3 (3.8)

i W, =3 (3.9)

=1

Each player can influence up to m = 3 nodes and the total weight of each player action cannot

exceed 3. Suppose Py selects the move

and P; selects the move

[7=117=1,22=1]

FIGURE 3.3: A game with the scale-free graph of Figure 3.2. Vertices are colored by their final
belief value in a white-black scale.

The average opinion after convergence becomes approximately 0.4981 and Py is the winner.
The graph of the network after convergence is illustrated in Figure 3.3 along with the limiting

beliefs colored in a white-black scale.

3.3 The Challenge

Our challenge is to develop an algorithm for computing the optimal player action or at least

a very good approximation of it; the more the action shifts the average limiting belief of the

16 Chapter 3 The Game-Theoretic Model

social network towards the player’s opinion, the better the move is. In order to achieve this, we

need to state some major principles that should characterize the strategic behavior of a player.

3.4 Strategy Principles

The following principles are based on observations that were made during experiments and
tests. Some points are also justified mathematically up to an extent. It is important to mention
that not all of these principles apply to all types of graphs but rather provide some general

insight for a successful strategy.

1. The action must be spread over the network in order for the action vertices to be close to
the majority of the graph nodes. It is unwise for a player to select too few nodes or nodes
that are close to each other and don’t span over the entire graph. This is very reasonable
since the stubborn opinion tends to weaken as the distance from the player vertex in-
creases creating a normal-like distribution around each of the directly influenced nodes.
High amount of spanning will result in less redundancy because the opinion of an indi-

vidual cannot exceed 1.

2. The action should contain nodes with a relatively high centrality measure (for example
PageRank or eigenvector centrality). It is also intuitive that directly influencing a node
that has already a high amount of influence over others will have greater overall impact
on the network according to the DeGroot model since a vertex contribution to the overall

opinion of the graph depends on the respective column of the adjacency matrix.

3. The move must exhaust its limits regarding the number of nodes to influence. A move
with m vertices will almost always and on any graph or any circumstances beat a move

with less than m vertices.

Chapter 4

Algorithms

Based on the strategy principles, we examined two algorithms whose aim is the suggestion of
a decent player action and developed the first one based on a brute-force approach (random

brute-force search) and the other one using a greedy, set-covering technique.

4.1 Random Brute-Force Search Algorithm

The brute-force method that was developed is a local search approach that aims in the exhaus-
tive search of moves in order to find the optimal one, relying on the computational power to
solve the problem. While a brute-force search is simple to implement, and will always find a
solution if it exists, its cost is proportional to the number of candidate solutions — which in
our case tends to grow very quickly as the size of the move vector (the move nodes) increases.
Therefore, the brute-force method is used when the problem size is limited (for example, on
a small graph) or for instructional purposes or as a means of understanding the underlying

problem and noting basic principles for its solution.

Algorithm Principle — The brute-force is an iterative method that initially starts with an arbi-
trary move C and on each step picks a random move (random vertices with random weights) R.
C and R are then simulated as two opponents and the winning move replaces C. Due to the fact
that this algorithm can potentially run forever, a time limit parameter is included. Figure 4.1

illustrates this algorithm.

The total number of possible non-weighted solutions is

!
y =C(n,m) = m (4.1)

i.e. the number of combinations of m allowed number of vertices per move out of n vertices

residing in the network. The expected number of random choices of the algorithm until all

17

18 Chapter 4 Algorithms

C = GetRandomMove()

l

R = GetRandomMove()

Is R better than C?

Is time over?

Answer is C

FIGURE 4.1: Diagram of the random brute-force search algorithm.

possible solutions are examined is O (y - log(y)). Thus, when n is constant the complexity of
this algorithm increases dramatically in relation to m (up to /2) or if m is fixed, the complexity

drastically increases as the number of vertices n increases.

Despite brute-force algorithm’s complexity, in practice it will quickly find a relatively decent
move without the need of actually simulating every possible combination of moves. In fact, as
we will later observe in Chapter 5, doubling the amount of time that the brute-force algorithm
is allowed to run, results in only minimal —but not negligible- gains in performance. This is
due to the fact that it gets progressively harder to achieve a better move once a decent one has

been established. In other words, the “goodput” of the algorithm drops over time.

In some rare cases, brute-force algorithm will be trapped on a loop; there exist a set of moves
[Cl, Co,... ,Cp] at which the algorithm is trapped and oscillates. For example, given a set of
three moves [A, B, C], A beats B which is turn beats C, but C beats A. Based on the Diagram 4.1,
the algorithm will be trapped on that set and in such case, a random move from the set will be

suggested. The explanation seems to be that these problem instances do not have pure Nash

Chapter 4 Algorithms 19

equilibria. This scenario resembles the rock-paper-scissors game!. Often times, the algorithm
will completely escape the loop and other times it will escape the set but get trapped in another
one. Studying these aspects of the influence game is outside the scope of this thesis, but might

be an interesting direction for future work.

4.2 Greedy Algorithm

As expected, the randomized brute-force search approach becomes cumbersome and unrespon-
sive in large graphs. Thus, we developed a greedy algorithm that is only executed in a limited
number of steps and -in our tests- yielded a very good approximation of the actual solution

and in some cases a precisely optimal move, mainly on the smaller graphs.

4.2.1 Algorithm Process

The algorithm initially creates a vertex distance map, which is a matrix D. D;; specifies the

shortest path distance from node j to node i. Afterwards, the matrix Fj; is created such that

Fi; = (4.2)

eDii

A vector Q of size equal to the number of vertices in the graph is also initialized with ones. The
greedy algorithm will perform exactly m steps, where m is the allowed number of vertices per

move, and on each step a node N; will be selected based on a heuristic. The vector

S = [(N1.Ym) . (N o) (i)] (43)

is the suggested move and the output of the algorithm. The algorithm does not take into
consideration move weights so all move nodes have equal weight. At each step of the operation,

the vector O is computed as:

©=(1-F)xQ (4.4)

and the x is selected as the index of the minimum element of ©. N, will then be added to the

vector S. Finally, a new Q is computed as
Onew = (1= Fx)' - Q (4.5)

where F, is the x-th row of F. The operation is repeated m times, at which point the vector S

contains exactly m elements. This process is illustrated in Figure 4.2.

Thttp://en.wikipedia.org/wiki/Rock-paper-scissors

http://en.wikipedia.org/wiki/Rock-paper-scissors

20 Chapter 4 Algorithms

Matrices D, F and vectors
Q and M are initialized

'

O = (1-F)xQ

/

x = min index of ®

'

Add Nxon vector M

Answer is M Q = Transpose(1-F x)*Q

FIGURE 4.2: Diagram of the greedy algorithm.

4.2.2 Example

We will now demonstrate the execution of this algorithm in the example graph of Figure 2.1
(also included in this section for convenience) with 2 nodes per move. Some basic measures of

this graph are:

+ Eigenvector centrality — [1.2 1.2 0.6]

+ PageRank - approx. [1.163 1.192 0.644]

« Diameter - 2

The (normalized) adjacency matrix T of this graph is

0 12 15
T=1{1 0 0 (4.6)
0 1 0

Chapter 4 Algorithms 21

FIGURE 4.3: An example graph with 3 nodes.

Initially, the greedy algorithm, creates the distance matrix D and the matrix F:

12 1 e 1/e2
0 1l=F=|1 1 1. (4.7)
2 0

The element F;; implies a certain amount of trust from agent j to agent i. It is not a measure
of influence since it is only affected by the shortest path between them but rather an approxi-

mation. Furthermore, we initialize the vector Q:

Qz[l 1 1] (4.8)

Vector Q (quota) represents a measure that shows how much “entropy” a vertex has. The
purpose of this algorithm is to reduce the overall “entropy”; to minimize the sum of vector Q.
Notice that we do not take into consideration edge weights on this algorithm. All edges have

the same amount of weight.

Every time a vertex (for example E) is selected by the algorithm, Q is adjusted in such a way
that nodes close to E have their quota reduced more than those away from E. The exact formula

of quota reduction is

Qi = Qi (1 - Fgi) (4.9)
This is equivalent to Formula 4.5 for all i’s.

In order to find the best move with 2 nodes we will execute exactly 2 steps of the algorithm. In
each step we will try to find which node minimizes the sum of Q. So, in the first step we will

test all 3 nodes, as to which minimizes Q. In the case where we select the node with ID 1 for

22 Chapter 4 Algorithms

example, the sum of vector Q after the adjustment will be (based on Formula 4.9)

3
O1= > 0;-(1-Fy) (4.10)
i=1
Similarly, for nodes 2 and 3:
3
Oy = > Qi (1-Fy) (4.11)
i=1
3
O3=> Qi+ (1-Fy) (4.12)
i=1

The above equations can be written in matrix form as
©=(1-F)xQ (4.13)
which is identical to Formula 4.4. Therefore, during the first step of the execution

0 1-1 1-1e| [1] [2-1fe-1/2
0=].—1/9 0]._1/6 X |1l = 2—2/e (414)
1-1e 1-1 0 1| |2-1e-1/e

Hence, the first node that will be added in the move vector will be node 2. Node 2 is the one
that minimizes the “entropy” of the network or the sum of vector Q. Node 2 is also an intuitive
choice; it is the only vertex that influences the other 2 nodes in one step and also constitutes the
best single-node move in this graph. The algorithm will then adjust Q according to Formula 4.5

as
1-1/e 1-1/e

1
Q=(1-F)"-0=| o |-|1|=] o (4.15)
1-1/| |1 11/

Execution of the second step is identical and is omitted. The second node that will be picked

is ID 3.

4.2.3 Strategy Principles

During the Q adjustment, nodes that are close to the node that was picked are drastically re-
duced so they are unlikely to be picked at a later stage since their neighborhood should already
have low quota. Furthermore, nodes with more central role tend to have shorter distances from
other nodes so the corresponding row of F is usually high, which decreases the correspond-
ing row of ©, making them better candidates. In a nutshell, centrality is achieved with F and

spreading is achieved with the Q adjustment process.

Chapter 4 Algorithms 23

4.3 Generalized Greedy Algorithm

Although this greedy algorithm is consistent with the strategy principles (Section 3.4), it has
difficulties making selections for the first step(s) of the calculation. This is because the first
selections (mainly the very first where the vector Q hasn’t been adjusted) tend to be the most
central vertices, which —as we will observe in Chapter 5- is not always the most optimal. In

order to overcome this difficulty, a new parameter called depth is introduced, such that
0 <depth<m (4.16)

where m is the number of allowed nodes per move. When depth = 0, the generalized greedy
algorithm degenerates into the greedy algorithm of Section 4.2 while on depth = m the algo-
rithms behaves like the brute-force method. This method is illustrated on Diagram 4.4.

The principle of this algorithm is to manually enumerate all the possible sets of depth amount of
moves and let the normal greedy algorithm complete the sets with the remaining (m — depth)
moves. The best move from those sets is the one that achieves the minimum sum(Q). A value

of depth = 1 was used in the experiments in Chapter 5.

24

Chapter 4 Algorithms

Initialize D and F, M = empty
Qmire Inf, M pese null

l

Clear M and add PRIL.next() to M

AN

Initialize Q with ones

l

0 = (1-F)xQ

[\

x = min index of ®

l

Add N xon vector M

Q = Transpose(1-F x)*Q

PRI.has_next()?

Time is over? i N

Answer is M pest

FIGURE 4.4: Diagram of the generalized greedy algorithm. PRI denotes the iterator which
manually enumerates the sets of depth amount of moves.

Chapter 5
Experimental Results

In this chapter, all sets of tests that were performed will be presented in the form of tables
and will be examined. The experiments are separated based on the graph type (all undirected):
path graph, cycle graph, two wheel graph, scale-free graph and scale-free cluster graph. For

each type of graph, several tests were conducted and overall conclusions were drawn.

The experiments were performed in a modern PC with Intel® Core™ i7-4770K CPU and 32GB
of RAM running Ubuntu 13.04. The software tools! were developed in Java 7 using IntelliJ
IDEA 13 Community Edition.

Since in many problem instances we are not aware of the optimal strategy, we evaluate our
algorithms by comparing them with each other. Hence, the tests were done in a round-robin

tournament-like environment and four players took place:
Random player — An agent who will pick the maximum number of nodes allowed at random.

Max PageRank player — An agent who will pick the maximum number of nodes allowed
based on their PageRank value (damping factor 0.15). Vertices with the same PageRank cen-
trality are ordered based on their ID.

Random brute-force search player — An agent implementing the brute-force algorithm men-

tioned in Section 4.1.

Greedy player — An agent implementing the greedy algorithm mentioned in Section 4.3. The

depth parameter used on all tests was set to 1.
The parameters used in the tests are:

Graph - This is a set of parameters related to the construction of the graph, like number of

vertices and other variables. Details are given later for each graph individually.

Thttps://github.com/gstamatelat/social-influence

25

https://github.com/gstamatelat/social-influence

26 Chapter 5 Experimental Results

Maximum move count — The maximum number of vertices that an agent can directly influ-
ence. Players in every experiment exhausted this limit. This measure will be mentioned as

m.

Maximum execution time - This parameter affects only the brute-force player and the
greedy one. When this limit is reached, the player will immediately return the best candi-
date move that it has up to that point. The values used for this parameter are (in seconds) 1, 15

and 30 and each triplet inside the cells on the tables below represent these execution times.

A total of 10 rounds were executed for each set of parameters while each round consisted of 6
games (since there are 4 participants). A win awards 1 point and a draw awards 0.5 points so
total points sum to 60 for each test and each set of parameters. For every game a new graph is

initialized; this practically affects the random-generated graphs.

Furthermore, for each graph and parameter set, a sample move suggested by the brute-force
and greedy player will be noted for instructional purposes on separate tables. These moves

were suggested using a 10-second execution time limit and are written in the form
(N =W1),(Ne=Wa),...,(Np = Wpn)].

The better move between those two is highlighted in bold.

5.1 Path Graph

A path graph? is a particularly simple example of a tree, namely a tree with two or more
vertices that is not branched at all, that is, contains only vertices of degree 2 and 1. A path
graph with n vertices will have n — 1 edges and a diameter of n — 1. Path graphs do not have
a DeGroot convergence, meaning that, given the adjacency matrix T, lim,_,., T? is undefined
since it alternates between two values. Let’s take for example the adjacency matrix for a path

graph with n = 4:

[0

. ;

1 0
1 0o ! 0
/2 X /2 X (5.1)
0 s 0
0O 0 1 0
then i -
s 0 2%/3 0
0 2 o !
/3 /3 (5.2)
3 0 2/3 0
0 2 0

’http://en.wikipedia.org/wiki/Path_graph

http://en.wikipedia.org/wiki/Path_graph

Chapter 5 Experimental Results 27
with k even and k — 0. Also
0 %3 0 /s
! 0 2 0
Tk+1 — /3) /3 1 (5.3)
0 /3 0 /s
Y5 0 /3 0

so the iterative DeGroot process will not converge. This is also because all cycles in this graph
are of length that are multiple of 2 (see Section 2.2.2). The eigenvector centrality of the graph

can be obtained by solving the equation sT = s:

s = factor - [1 2 2 1] (5.4)
So, the (non-normalized) eigenvector centrality of this graph is [1 2 2 1]. It is easy to
reproduce the above method for larger path graphs:

Eigenvector Centrality of Path Graph = [1 2 2

2 2 1] (5.5)

PageRank on a path graph with n vertices will be lowest on 1 and n and highest on 2 and n— 1.

For example, the PageRank (damping factor 0.15) vector of a path graph with 6 vertices is

PageRankofPath/é:[0.658 1.196 1.145 1.145 1.196 0.658]

(5.6)

FIGURE 5.1: A path graph with 6 vertices colored by their PageRank value.

A path graph is only characterized by the number of nodes n it contains. n = {5,11,25} was

used in this set of tests.

’ (n,m) ‘ Random Max PageRank Brute-Force ‘ Greedy ‘
(5,1) 45-5.0-6.5 7.5-6.0-5.0 24.0 - 245-24.0 | 24.0 -24.5-24.5
(5,2) 25-05-25 19.5-20.0-19.0 | 185-19.5-19.0 | 19.5-20.0 - 19.5
(11,3) 4.0-6.0-7.0 6.0-4.0-3.0 28.0 - 30.0 - 29.0 | 22.0 - 20.0 - 21.0
(25,3) 9.0-9.0-9.0 1.0-1.0-1.0 23.0 - 26.0 - 29.0 | 27.0 - 24.0 - 21.0
(51,5) | 14.0 - 11.0 - 11.0 0.0-0.0-10.0 16.0 - 19.0 - 19.0 | 30.0 - 30.0 - 30.0

TABLE 5.1: Path graph results

28 Chapter 5 Experimental Results

’ (n,m) \ Brute-Force \ Greedy ‘
(5.1) [3=1.0] [3=1.0]
(5.2) [2=1.0, 4=1.0] [2=1.0, 4=1.0]
(11,3) | [2-0.83, 6=1.11, 9-1.06] [3=1.0, 6=1.0, 9=1.0]

(25,3) | [5=1.07, 13=0.74, 21=1.19] | [6=1.0, 13=1.0, 20=1.0]
(51,5) [3=0.9, 15=1.41, 25=0.63, [7=1.0, 16=1.0, 26=1.0,
36=0.83, 46=1.23] 35=1.0, 44=1.0]

TaBLE 5.2: Path graph sample moves

Overall, according to Table 5.1, the brute-force and the greedy players perform better. However,

there are a few things one can note:

1. The brute-force will generally score higher on higher execution time limits.

2. The greedy algorithm scales very well with the increase of move nodes count. This is
due to the complexity of brute-force, which slows down considerably on higher move

node count.

3. Max PageRank performance peaks on m = 2. This is because on a path graph with 5
nodes, the 2 nodes with highest centrality are 2 and 4, which happens to be the best

action.

4. The random player’s strength increases as the graph gets larger and even outperforms
the PageRank player. This (surprising) result can be attributed to the uniform distribution
of the random function. Given enough space, the random player will make sure (up to
a degree) that the random nodes are spread evenly throughout the path graph while the
PageRank player picks will always tend to be near the edge (but not directly the edge).

Spreading is more important in this sparse graph than centrality.

5.2 Cycle Graph

A cycle graph?® is a graph that consists of a single cycle, or in other words, some number of
vertices connected in a closed chain. A cycle graph with n vertices has n edges and every
vertex has degree 2. A cycle graph with even number of vertices, like the path graph, does not
converge. All vertices have the same eigenvector centrality and the same PageRank due to the

graph’s symmetry.

A cycle graph is also only characterized by the number of nodes n it contains. We used 4, 10,
24, 50 as n for our tests. On the cycle graph, spreading is the only factor that affects the optimal

move since no vertex is more central than any other.

3http://en.wikipedia.org/wiki/Cycle_graph

http://en.wikipedia.org/wiki/Cycle_graph

Chapter 5 Experimental Results 29

@ O
@ O

FIGURE 5.2: A cycle graph with 6 vertices colored by their PageRank value.

’ (n, m) \ Random \ Max PageRank Brute-Force Greedy ‘

(4,1) | 15.0-15.0 -15.0 | 15.0 - 15.0 - 15.0 | 15.0 - 15.0 - 15.0 15.0 - 15.0 - 15.0
(4,2) | 10.0 - 10.0 - 10.0 30-35-25 24.0 - 225-240 | 23.0 -24.0 - 23.5
(10,3) | 13.0 - 10.5 - 13.0 0.0-0.5-0.0 30.0 - 29.0 - 30.0 | 17.0 - 20.0 - 17.0
(24,3) | 12.0 - 11.5-12.0 0.0-0.0-0.0 30.0 - 30.0 - 30.0 | 18.0 - 18.5-18.0
(50,5) | 13.0 -11.0 -10.0 0.0-0.0-0.0 17.0 - 22.0 - 25.0 | 30.0 - 27.0 - 25.0

TaBLE 5.3: Cycle graph results

’ (n,m) ‘ Brute-Force ‘ Greedy ‘
(4,1) [4=1.0] [1=1.0]
(4,2) [1=1.0, 3=1.0] [1=1.0, 3=1.0]

(10,3) | [3=0.97, 6=0.99, 10=1.04] [3=1.0, 6=1.0, 8=1.0]
(24,3) | [2=0.94, 10=1.03, 18=1.03] | [1=1.0, 7=1.0, 19=1.0]
(50,5) | [5=0.63, 16=0.68, 28=1.11, | [8=1.0, 21=1.0, 33=1.0,
38=1.76, 49=0.82] 40-1.0, 46=1.0]

TABLE 5.4: Cycle graph sample moves

Some conclusions deriving from Table 5.3 are the following:

1. On the (4, 1) test, all players performed equally well. This, of course, is due to the fact

that all single-vertex moves are identical since they all lead to symmetric graphs.

2. The PageRank player scores very low, especially on larger graphs. This is because all
vertices have the same centrality and PageRank player will select them in order rather

than randomly. Since the move nodes are cramped, the score is very low.

3. The greedy player is gaining a significant advantage over the brute-force one on the large

graph. The score difference, however, is reduced in higher execution times because the

30 Chapter 5 Experimental Results

brute-force has a computational advantage.

4. The random player’s performance is particularly good on almost all tests. This, like in
the path graph but even stronger here, is due to the uniform distribution of the random

function.

5.3 Two-Wheels Graph

The two-wheels graph is a graph which consists of two wheels bridged to a common vertex.
This type of network can have n vertices, where n odd and n > 7, but for our tests we only
used n = 11. This graph was used in order to demonstrate the importance of spreading the
move nodes throughout the network over picking vertices with some high centrality measure.

The PageRank (damping factor 0.15) in the two-wheels graph is

1.554 for node 1
1.331 for nodes 2 and 3

PageRank/.15 of Two-Wheels ~ (5.7)
0.857 for nodes 4, 6, 9, 10

0.839 for nodes 5, 7, 8, 11

The eigenvector centrality in the two-wheels graph is

1+13/20=1.65 fornode 1
Eigenvector centrality of Two-Wheels = ¢ 1+ 3/8 = 1.375 fornodes2and3 (5.8)
33/40 = 0.825 for the rest

F1GURE 5.3: The two-wheels graph with vertices colored by their PageRank centrality value.

Since we only use 11 nodes for the two-wheels graph, the only parameter is m, the maximum

number of vertices of a move.

Chapter 5 Experimental Results 31

’ (m) \ Random \ Max PageRank Brute-Force Greedy
(1) 1.0-20-25 | 20.0-19.5-19.5 19.5-19.0 - 19.0 19.5-19.5 -19.0
(2) | 05-0.0-1.0 9.5-10.0-9.0 20.5-24.0-25.0 | 29.5 -26.0 - 25.0
(3) | 0.0-00-0.0 | 25.0-19.0-20.0 10.0 - 23.0 - 22.0 | 25.0 - 18.0 - 18.0
(4) 1.0-2.0-2.0 14.0 - 13.0 - 14.0 | 30.0 - 29.0 - 30.0 15.0 - 16.0 — 14.0

TaBLE 5.5: Two-Wheels graph results

’ (m) ‘ Brute-Force ‘ Greedy ‘
(1) [1=1.0] [1=1.0]
) [2=1.0, 3=1.0] [2=1.0, 3=1.0]
3) [1=0.98, 2=0.98, 3=1.05] [1=1.0, 2=1.0, 3-1.0]
@) | [1=1.12, 2=1.34, 3-0.98, 4=0.56] | [1=1.0, 2=1.0, 3=1.0, 10=1.0]

TABLE 5.6: Two-Wheels graph sample moves

Some observations based on Table 5.5 are:

1. The random player has very poor performance on all tests. This comes to no surprise;
careful planning is needed for a player to succeed on this graph due to its manipulated

geometry.

2. Onm = 1 all players (except random) perform equally well because all will suggest node

1, which is the best move.

3. The PageRank player fails on m = 2 and this is because it suggests (1,2) while the
optimal move is (2,3). This is a typical example of a sparse graph that the top-rank

vertex should not be included in the move.

4. On m = 4, the player based on the greedy algorithm scores poorly. This is partly due
to the asymmetry of the graph. Moves with weighted nodes suggested by the brute-
force player are generally stronger than moves with uniform weights (all nodes unary
weight). The greedy player suggests (1,2, 3, 6) on this graph which is exactly the same
as the suggestion of the max PageRank player.

5.4 Scale-Free Graph

A scale-free graph? is a graph whose degree distribution follows a power law, at least asymp-

totically. A few examples of networks claimed to be scale-free include:

1. Social networks, including collaboration networks. Two examples that have been stud-
ied extensively are the collaboration of movie actors in films and the co-authorship by

mathematicians of papers.

‘http://en.wikipedia.org/wiki/Scale-free_network

http://en.wikipedia.org/wiki/Scale-free_network

32 Chapter 5 Experimental Results

2. Many kinds of computer networks, including the Internet and the web graph of the
World Wide Web.

3. Some financial networks such as interbank payment networks. [4, 17]

4. Protein-protein interaction networks.

5. Semantic networks. [18]

6. Airline networks.
Several scale-free models and generative methods exist, however, we use the Barabasi-Al-
bert [2] algorithm to generate scale-free graphs. According to this algorithm:

1. The network begins with an initial connected network of ky nodes.

2. New nodes are added to the network one at a time. Each new node is connected to
k < ko existing nodes with a probability that is proportional to the number of links that

the existing nodes already have.

Heavily linked nodes (“hubs”) tend to quickly accumulate even more links, while nodes with
only a few links are unlikely to be chosen as the destination for a new link. The new nodes have
a “preference” to attach themselves to the already heavily linked nodes. Due to the algorithm
itself, nodes with low ID tend to have higher centrality since they are added earlier on the

network. This can be illustrated on Figure 5.4.

Experiments for this graph are given in the form (n, kg, m), where n is the number of nodes in

the graph, kg is the initial clique and m the number of move nodes.

’ (n, ko, m) ‘ Random Max PageRank ‘ Brute-Force Greedy

(10,2,1) 1.0-1.0-0.5 19.0 - 19.5-20.0 | 21.0 - 21.5 - 20.5 | 19.0 - 18.0 - 19.0
(20,2,2) 0.0-0.0-0.0 24.0-17.0-15.0 | 11.0 - 27.0 - 30.0 | 25.0 - 16.0 — 15.0
(50,2,5) 10.0 - 0.0 - 0.0 | 28.5 -27.0 - 27.0 1.0 - 16.0 - 14.0 20.5-17.0 - 19.0
(50,5,5) 70-0.0-00 | 29.0 - 28.0 - 28.0 3.0 -15.0 - 16.0 21.0 - 17.0 - 16.0

TABLE 5.7: Scale-Free graph results

’ (n, ko, m) ‘ Brute-Force ‘ Greedy ‘
(10,2,1) [2=1.0] [2=1.0]
(20,2,2) [1=1.0, 2=1.0] [1=1.0, 2=1.0]
(50,2,5) [1=2.19, 3=1.3, 12=1.03, | [1=1.0, 3=1.0, 12=1.0,]
22=0.05, 27=0.43] 16=1.0, 39=1.0]
(50,55 | [3=1.13,4=1.7,7=0.99, | [2=1.0, 4=1.0, 5-1.0,
15=0.63, 26=0.55] 15=1.0, 45=1.0]

TABLE 5.8: Scale-Free graph sample moves

Based on the results in Table 5.7 the following can be observed:

Chapter 5 Experimental Results 33

FIGURE 5.4: A scale-free graph with 50 vertices colored by their PageRank value. The seed
used for this graph is 5785. The diameter of this graph is 4.

1. On m = 5, the random player can achieve a reasonable score using the uniform dis-
tribution mentioned earlier. On higher execution times, however, this performance is

diminished by the brute-force player.

2. The PageRank player performs particularly well, especially on larger graphs. This is
justified by the importance of selecting nodes with higher centrality values on dense
graphs. It is worth noting that the graph illustrated on Figure 5.4 has a diameter of 4,

which is the same as the two-wheels graph.

5.5 Scale-Free Cluster Graph

This scale-free cluster graph is composed of several scale-free sub-graphs bridged together in
pairs. The bridged points are random vertices. The scale-free cluster graph is a combination of

a cycle graph and a scale-free one.

34 Chapter 5 Experimental Results

)
@ ® O O @
& g 2
e © P o

%@ g @

2\9@ @ @

247@ @ ‘ @

I @ o @ /o ®

& A & @ i\

)) @ o ¢ O

® T @ ®
o & @ @ ®@
& &

4 @@ @ @
& 7 o i &
a1/ 0 A & ®
& & &

5} @ 2 T

\ & @ =
2/1\@ 9 632 @
= ® = & @ ©
o7 D ae\) & @ © ®
- IR o O \w T _8 GRS

@ © @ @ @ -

@ @ @ @ @ @

@ ® © ® © 5 ©

® @ ® @ @

@@@@ @@ g 8% g

715 @@6 - -~

N 7 @ N e s

@ @@@@ @@21
@ © @
@ @@@ @
& ®

FIGURE 5.5: A scale-free cluster graph with 5 subgraphs of 50 vertices each colored by their
PageRank value. The seed used for this graph is 310398. Its diameter is 13.

Experiments for this graph are given in the form (n, ko, ¢, m), where n is the number of nodes

in each sub-graph, ky is the initial clique, ¢ the number of clusters and m the number of move

nodes.

Observations for scale-free cluster graph based on Table 5.9:

1. The greedy player is the clear winner on low execution time limits and made the “best

guess at first sight” on all tests.

2. The brute-force player performs poorly even on high execution times. This is especially

true on high volumes of m because the complexity of the algorithm increases exponen-

tially in relation to m.

Chapter 5 Experimental Results

35

’ (n, ko, c,m) ‘ Random Max PageRank Brute-Force Greedy
(10,2,2,1) 85-20-30 | 180-135-125 | 7.5-25.0-25.5 26.0 - 19.5 - 19.0
(10,2,2,2) 20-3.0-20 | 195-150-125 | 16.0 -22.5-28.0 | 22.5-19.5-17.5
(10,2,2,4) 0.0-40-20 | 20.5-125-20.5 | 17.0 - 22.0 - 21.0 | 22.5-21.5-21.5
(25,2,5,1) 35-25-20| 205-11.5-120 | 125-27.0-29.5 | 23.5-19.0 - 16.5
(25,2,5,5) 20-0.0-0.0 | 21.5-14.5-13.0 8.0-16.0-17.0 | 28.5-29.5-30.0
(25,2,5,10) | 1.0 -0.0 - 0.0 | 23.0 - 25.0 — 23.0 9.0-10.0-11.0 | 27.0-25.0 -26.0

TABLE 5.9: Scale-Free Cluster graph results
’ (n, ko, c,m) \ Brute-Force \ Greedy ‘
(10,2,2,1) [3=1.0] [3=1.0]
(10,2,2,2) [1=0.99, 13-1.01] [2=1.0, 13=1.0]
(10,2,2,4) | [4=1.09,9=0.91, 11=0.91, 14=1.1] | [5-1.0, 9=1.0, 11=1.0, 14=1.0]
(25,2,5,1) [36=1.0] [76=1.0]
(25,2,5,5) [13=1.37, 27=0.49, 32=0.35 [7=1.0, 27=1.0, 52=1.0,
52=1.46, 102=1.34] 80-1.0, 101=1.0]
(25,2,5,10) | [1=1.06, 14=1.34, 32=1.1, 42=0.78, | [2=1.0, 11=1.0, 27=1.0, 28=1.0,
54=0.9, 59=0.72, 79=1.39, 100=0.42, | 51=1.0, 52=1.0, 77=1.0, 101=1.0,
104=1.16, 118=1.13] 102=1.0, 104=1.0]

TABLE 5.10: Scale-Free Cluster graph sample moves

Chapter 6

Discussion

In this thesis, we defined and examined a non-cooperative, zero-sum game between two firms
on a social network. We investigated possible equilibria and stated primitive directions towards
a successful strategy. We also analyzed and compared several algorithms implementing player
strategies: a completely random player, a player that always selects the highest PageRank-
value vertices, a player implementing a brute-force search technique and, finally, a player that

implements a greedy algorithm which uses a heuristic to suggest an action.

6.1 Strategy Principles

The most important goal of this work was to obtain some general insight on the game and a
basic understanding on its mechanics. This was accomplished with careful observations using
the random brute-force search algorithm mentioned in Section 4.1 and the findings were three
strategy principles mentioned in Section 3.4. Of course, these principles do not apply to all
types of graphs or to any circumstances but rather provide a rough guide to what appears to

be a decent technique of maximizing the utility function.

These principles suggest that a player should select all the nodes m that are allowed and also not
to select vertices that are close to each other but rather span over the entire graph. The player
should also try to select nodes with a relatively high centrality measure without sacrificing the

first principle.

6.2 Algorithm Conclusions

Random - The random player only performs well on graphs where spreading is the major

factor that determines the optimal strategy. These graphs include the path and cycle graph,

37

38 Chapter 6 Discussion

especially the latter, and are usually very sparse. This behavior is attributed to the uniform
distribution of the random function, which is also the reason of the huge fluctuation among

graphs that characterizes the random player.

Max PageRank - On the other hand, the max PageRank player achieved higher score on
denser graphs like the scale-free one and the scale-free cluster. These graphs have low diameter
compared to their size and spreading the move isn’t very meaningful; centrality is the formula
of success in this case. Like the random player, max PageRank has also a large amount of

fluctuation, ranging from best (on scale-free) to worst (on the path).

Brute-Force — A general remark on the random brute-force search algorithm is that although
it suffers from prohibitively high complexity, it constantly reports the progress and any new
moves that it finds. Hence, in practice, it will quickly find a relatively decent move without
the need of exhausting all the combinations of moves. This is due to the fact that is gets

progressively harder to achieve a better move once a decent one has been established.

The random brute-force search player performed best on low values of n and m, but also scored
firmly on all types of graphs where other players failed. This algorithm is dominant on high
enough values of execution time and was used extensively to provide general insights, strategy

principles and game mechanics understanding.

Greedy — The greedy algorithm achieved a very consistent performance throughout all tests
but its major strength proved to be the complicated scale-free cluster graph. Furthermore, it

provided the majority of the best “moves at first sight” (1 second execution).

6.3 Future Work

Primarily, in order to better understand the mechanics of the game we need to further examine
and experiment with the convergence for problem instances which do not have pure Nash

equilibria. This perspective of the problem is rather vague for now.

Furthermore, it is suspected that the speed of convergence and the effectiveness of a player
action may be related; it is possible that a superior move can lead to faster convergence. This

is something that should be investigated.

We also need to enrich the tests with more types of graphs and possibly incorporate parts of
real Internet social networks, like Twitter. It would be very interesting to examine the behavior

of our algorithms in such a network.

Finally, adding additional players and tweaking the existing ones could help further establish
the validity of the strategy principles mentioned in this thesis. The greedy algorithm could

Chapter 6 Discussion 39

quite possibly perform better with modifications on the distance matrix D (and therefore the
matrix F) to better reflect the metric of influence or trust rather than distance. There are also
thoughts about an algorithm based on the concept of force-directed graph drawing (see [13]
and the references therein), which function by assigning forces between connected vertices and
simulating the graph up to the equilibrium state. This idea can also be utilized by assigning a
negative electrical charge on each vertex of the graph and adding m positively charged entities
in the graph. These points will tend to be attracted by high concentrations of graph vertices
(centrality) but will repel each other (spreading).

Appendix A

Figure and Diagram Sources

All figures in this thesis were created using the open-source software Gephi [3] using “ForceAt-

las 2” layout algorithm.

Diagrams were created using the DOT graph description language! and rendered with the

software Graphviz?. Below is the source code for the diagrams.

Diagram of the brute-force algorithm - Figure 4.1

digraph G {

bgcolor = transparent;

graph [fontname = "Constantia"];
node [fontname = "Constantia"];
edge [fontname = "Constantia"];

get_initial [shape=box, label="C = GetRandomMove()"];
get_random [shape=box, label="R = GetRandomMove()"];
is_better [label="Is R better than C?"];

assignment [shape=box, label="C = R"];

time_over [label="Is time over?"];

answer [shape=house, label="Answer is C"];

get_initial -> get_random;

get_random -> is_better;

is_better -> time_over [label="No"];
is_better -> assignment [label="Yes"];
time_over -> get_random [label="No"];
assignment -> time_over;

time_over -> answer [label="Yes"];

Diagram of the greedy algorithm - Figure 4.2

digraph G {
bgcolor = transparent;

Thttp://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://www.graphviz.org/

41

http://en.wikipedia.org/wiki/DOT_(graph_description_language)
http://www.graphviz.org/

Appendix A Figure and Diagram Sources

42
graph [fontname = "Constantia"];
node [fontname = "Constantia"];
edge [fontname = "Constantia"];

initialize [shape=box, label="Matrices D, F and vectors\nQ and M are initialized"];

get_qi [shape=box, labell=" = (1-F)xQ"];
get_x [shape=box, label="x = min index of K"];

add_nx [shape=box, label=<Add N_x on vector M>];
get_q [shape=box, label=<Q = Transpose(1-F_x)*Q>];

finished [label="count(M) < m?"];
answer [shape=house, label="Answer is M"];

initialize -> get_qi;

get_qi -> get_x;

get_x -> add_nx;

add_nx -> finished;

finished -> answer [label="No"];
finished -> get_q [label="Yes"];
get_q -> get_qi;

Diagram of the generalized greedy algorithm — Figure 4.4

digraph G {

bgcolor = transparent;

graph [fontname = "Constantia"];
node [fontname = "Constantia"];
edge [fontname = "Constantia"];

init [shape=box, label=<Initialize D and F, M = empty

Q_{min} = Inf, M_{best} = null>];

initialize [shape=box, label="Initialize Q with ones"];

get_qi [shape=box, labell=" = (1-F)xQ"];
get_x [shape=box, label="x = min index of K"];

add_nx [shape=box, label=<Add N_x on vector M>];
get_q [shape=box, label=<Q = Transpose(1-F_x)*Q>];

finished [label="count(M) < m?"];
q_less_min [label=<Q < Q_{min}?>];
pri_has_next [label="PRI.has_next()?"];

assign_q_less [shape=box, label=<Q_{min} = Q
M_{best} = M>];
answer [shape=house, label=<Answer is M_{best}>];

time_over [label="Time is over?"];

clear_m [shape=box, label="Clear M and add PRI.next() to M"];

initialize -> get_qi;

get_qi -> get_x;

get_x -> add_nx;

add_nx -> finished;

finished -> get_q [label="Yes"];

get_q -> get_qi;

finished -> q_less_min [label="No"];
q_less_min -> pri_has_next [label="No"];
q_less_min -> assign_q_less [label="Yes"];
assign_q_less -> pri_has_next;

pri_has_next -> answer [label="No"];

Appendix A Figure and Diagram Sources

43

pri_has_next -> time_over [label="Yes"];
time_over -> answer [label="Yes"];
time_over -> clear_m [label="No"];
clear m -> initialize;

init -> clear _m;

Bibliography

[1]
(2]

(3]

(8]

(9]

[10]

[11]
[12]

W. Allport Gordon. The nature of prejudice, 1954.

A.-L. Barabasi and R. Albert. Emergence of scaling in random networks. science, 286

(5439):509-512, 1999

M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source software for exploring
and manipulating networks, 2009. URL http://www.aaai.org/ocs/index.
php/ICWSM/09/paper/view/154.

G. De Masi, G. Iori, and G. Caldarelli. Fitness model for the italian interbank money
market. Phys. Rev. E, 74:066112, Dec 2006. doi: 10.1103/PhysRevE.74.066112. URL http:
//link.aps.org/doi/10.1103/PhysRevE.74.066112.

M. H. DeGroot. Reaching a consensus. journal of the American Statistical Association, 69

(345):118-121, 1974.

P. Dubey, R. Garg, and B. De Meyer. Competing for customers in a social network: The

quasi-linear case. In Internet and Network Economics, pages 162—173. Springer, 2006.

L. C. Freeman. A set of measures of centrality based on betweenness. Sociometry, pages

35-41, 1977.

J. Ghaderi and R. Srikant. Opinion dynamics in social networks: a local interaction game
with stubborn agents. In American Control Conference (ACC), 2013, pages 1982-1987. IEEE,
2013.

B. Golub and M. O. Jackson. Naive learning in social networks and the wisdom of crowds.

American Economic Journal: Microeconomics, pages 112-149, 2010.

S. Goyal and M. Kearns. Competitive contagion in networks. In Proceedings of the forty-

fourth annual ACM symposium on Theory of computing, pages 759-774. ACM, 2012.
M. O. Jackson. Social and economic networks. Princeton University Press, 2010.

J. Kleinberg. Networks, Crowds, and Markets. Cambridge University Press, 2010.

45

http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://link.aps.org/doi/10.1103/PhysRevE.74.066112
http://link.aps.org/doi/10.1103/PhysRevE.74.066112

46 Bibliography

[13] S. G. Kobourov. Spring embedders and force directed graph drawing algorithms. arXiv
preprint arXiv:1201.3011, 2012.

[14] M. Newman. Networks: an introduction. Oxford University Press, 2010.

[15] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing
order to the web. 1999.

[16] G. Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581-603, 1966.

[17] K.Soramiki, M.L.Bech, J. Arnold, R.]. Glass, and W. E. Beyeler. The topology of interbank
payment flows. Physica A: Statistical Mechanics and its Applications, 379(1):317-333, 2007.

[18] M. Steyvers and J. B. Tenenbaum. The large-scale structure of semantic networks: Statis-

tical analyses and a model of semantic growth. Cognitive science, 29(1):41-78, 2005.

[19] E.Yildiz, D. Acemoglu, A. Ozdaglar, A. Saberi, and A. Scaglione. Discrete opinion dynam-
ics with stubborn agents. SSRN eLibrary, 2011.

	Abstract
	Περίληψη
	Contents
	Symbols
	1 Introduction
	2 Background
	2.1 The Social Graph
	2.1.1 The Adjacency Matrix
	2.1.2 Definitions
	2.1.3 Centrality

	2.2 The DeGroot Model
	2.2.1 Updating Process
	2.2.2 Convergence
	2.2.3 Google's PageRank

	3 The Game-Theoretic Model
	3.1 Definition
	3.1.1 Empirical Definition
	3.1.2 Formal Definition

	3.2 Examples
	3.2.1 First Example
	3.2.2 Second Example

	3.3 The Challenge
	3.4 Strategy Principles

	4 Algorithms
	4.1 Random Brute-Force Search Algorithm
	4.2 Greedy Algorithm
	4.2.1 Algorithm Process
	4.2.2 Example
	4.2.3 Strategy Principles

	4.3 Generalized Greedy Algorithm

	5 Experimental Results
	5.1 Path Graph
	5.2 Cycle Graph
	5.3 Two-Wheels Graph
	5.4 Scale-Free Graph
	5.5 Scale-Free Cluster Graph

	6 Discussion
	6.1 Strategy Principles
	6.2 Algorithm Conclusions
	6.3 Future Work

	A Figure and Diagram Sources
	Bibliography

